Quantification of the factors that influence discharge correlation in model motor neurons.
نویسندگان
چکیده
The purpose of this study was to quantify the influence of intrinsic properties, active dendritic conductances, and background excitation and inhibition on measures of discharge correlation in the time and frequency domains with known levels and patterns of common synaptic input. The study involved a computer simulation of a population of neurons with a range of input resistances (0.54-3.7 MOmega) and surface areas (407,000-712,000 microm(2)). The neurons were simulated with no, moderate, or high levels of active dendritic conductances and were activated with either excitatory input only or excitatory and inhibitory inputs. The patterns of common input, either branched common input or common modulation, were tested with 0, 30, 60, and 90% common input. The results confirm previous findings of an exponential relation between the level of common input and indexes of synchronization; only when the common input comprised >/=60% of the total excitatory input was there a significant effect on discharge correlation. Synchronization was greatest in models that had passive dendrites. Active dendritic conductances caused the discharge rate of the neuron to saturate and decreased motor-unit synchronization. However, the addition of 10% background inhibitory input increased synchronization in these models. In contrast, common rhythmic modulation of inputs at 24 Hz usually decreased synchronization. Significant coherence at the modulated frequency occurred in the commonly modulated neurons when >/=60% of the inputs were modulated. Furthermore, active dendritic conductances decreased coherence. Branched common input caused high levels of coherence across a broad spectrum and when combined with active dendritic conductances caused significant frequency peaks in the 30- to 50-Hz band. In conclusion, the level of inhibitory input and active dendritic conductances interact with the amount of common input to determine time- and frequency-domain discharge correlation.
منابع مشابه
Motor Unit Number Estimation in Normal and Parkinsonism Model of Medial Gastrocnemius Muscle in Rats
Motor units (MUs) reflect the function of the central nervous motor system. Thus, the estimated MU number is a good option to investigate the functional movement disorder in the Parkinson’s disease (PD). The purpose of this study was to compare the estimated MUs number in the medial gastrocnemius (MG) muscle of the normal rats and those with the Parkinsonism. The MG muscle of two age-matche...
متن کاملEstrogen agonist genistein differentially influences the cognitive and motor disorders in an ovariectomized animal model of Parkinsonism
Objective(s): Parkinson's disease (PD) is a progressive neurological disorder associated with motor disabilities and cognitive dysfunction as well. Evidence indicates that PD occurs less frequently in women than men, confirming a role for steroid hormones in protection of dopaminergic nigrostriatal neurons. It is reported that soy genistein, an estrogen agonist phytoestrogen, display neuroprote...
متن کاملIntroduction of proper model of land slide relationship on sediment in GolGol basin system
Extended abstract 1- Introduction Investigating the relationship between landslides in sediment production in watersheds is one of the most important issues in the management of watersheds. The purpose of this research is to introduce a suitable model for the effect of landslide on sediment load in Gol Gol watershed in Ilam province, with the assumption that the linear relationship betw...
متن کاملThe development and evaluation of a portable polyethylene biogas reactor
Several factors can influence the process of biogas production. The type of reactor is one of the key factors that influence biogas production. Therefore, the aim of this study was to construct a portable horizontal polyethylene-based biogas reactor. In addition, the performance of the developed biogas reactor was tested through digestion of cow manure. The experiments were carried out in Mashh...
متن کاملCulturing Adult Rat Hippocampal Neurons with Long-Interval Changing Media
Background: Primary cultures of embryonic neurons have been used to introduce a model of neurons in physiological and pathological conditions. However, age-related cellular events limit this method as an optimal model in adult neurodegenerative diseases studies. Besides, short-interval changing media in previous cultures decreases the effectiveness of this model. As an example of this matter, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 91 2 شماره
صفحات -
تاریخ انتشار 2004